2,498 research outputs found

    Influence of water intercalation and hydration on chemical decomposition and ion transport in methylammonium lead halide perovskites

    Get PDF
    The use of methylammonium (MA) lead halide perovskites \ce{CH3NH3PbX3} (X=I, Br, Cl) in perovskite solar cells (PSCs) has made great progress in performance efficiency during recent years. However, the rapid decomposition of \ce{MAPbI3} in humid environments hinders outdoor application of PSCs, and thus, a comprehensive understanding of the degradation mechanism is required. To do this, we investigate the effect of water intercalation and hydration of the decomposition and ion migration of \ce{CH3NH3PbX3} using first-principles calculations. We find that water interacts with \ce{PbX6} and MA through hydrogen bonding, and the former interaction enhances gradually, while the latter hardly changes when going from X=I to Br and to Cl. Thermodynamic calculations indicate that water exothermically intercalates into the perovskite, while the water intercalated and monohydrated compounds are stable with respect to decomposition. More importantly, the water intercalation greatly reduces the activation energies for vacancy-mediated ion migration, which become higher going from X=I to Br and to Cl. Our work indicates that hydration of halide perovskites must be avoided to prevent the degradation of PSCs upon moisture exposure

    The dynamics of methylammonium ions in hybrid organic-inorganic perovskite solar cells

    No full text
    Methylammonium lead iodide perovskite can make high-efficiency solar cells, which also show an unexplained photocurrent hysteresis dependent on the device-poling history. Here we report quasielastic neutron scattering measurements showing that dipolar CH3NH3+ ions reorientate between the faces, corners or edges of the pseudo-cubic lattice cages in CH3NH3PbI3 crystals with a room temperature residence time of ~14 ps. Free rotation, π-flips and ionic diffusion are ruled out within a 1–200-ps time window. Monte Carlo simulations of interacting CH3NH3+ dipoles realigning within a 3D lattice suggest that the scattering measurements may be explained by the stabilization of CH3NH3+ in either antiferroelectric or ferroelectric domains. Collective realignment of CH3NH3+ to screen a device’s built-in potential could reduce photovoltaic performance. However, we estimate the timescale for a domain wall to traverse a typical device to be ~0.1–1 ms, faster than most observed hysteresis

    Wnt/β-catenin Signalling Is Active in a Highly Dynamic Pattern during Development of the Mouse Cerebellum

    Get PDF
    The adult cerebellum is composed of several distinct cell types with well defined developmental origins. However, the molecular mechanisms that govern the generation of these cell types are only partially resolved. Wnt/β-catenin signalling has a wide variety of roles in generation of the central nervous system, though the specific activity of this pathway during cerebellum development is not well understood. Here, we present data that delineate the spatio-temporal specific pattern of Wnt/β-catenin signaling during mouse cerebellum development between E12.5 and P21. Using the BAT-gal Wnt/β-catenin reporter mouse, we found that Wnt/β-catenin activity is present transiently at the embryonic rhombic lip but not at later stages during the expansion of cell populations that arise from there. At late embryonic and early postnatal stages, Wnt/β-catenin activity shifts to the cerebellar ventricular zone and to cells arising from this germinal centre. Subsequently, the expression pattern becomes progressively restricted to Bergmann glial cells, which show expression of the reporter at P21. These results indicate a variety of potential functions for Wnt/β-catenin activity during cerebellum development

    Barcoded DNA-Tag Reporters for Multiplex Cis-Regulatory Analysis

    Get PDF
    Cis-regulatory DNA sequences causally mediate patterns of gene expression, but efficient experimental analysis of these control systems has remained challenging. Here we develop a new version of “barcoded" DNA-tag reporters, “Nanotags" that permit simultaneous quantitative analysis of up to 130 distinct cis-regulatory modules (CRMs). The activities of these reporters are measured in single experiments by the NanoString RNA counting method and other quantitative procedures. We demonstrate the efficiency of the Nanotag method by simultaneously measuring hourly temporal activities of 126 CRMs from 46 genes in the developing sea urchin embryo, otherwise a virtually impossible task. Nanotags are also used in gene perturbation experiments to reveal cis-regulatory responses of many CRMs at once. Nanotag methodology can be applied to many research areas, ranging from gene regulatory networks to functional and evolutionary genomics

    Sonic Hedgehog Is a Chemoattractant for Midbrain Dopaminergic Axons

    Get PDF
    Midbrain dopaminergic axons project from the substantia nigra (SN) and the ventral tegmental area (VTA) to rostral target tissues, including the striatum, pallidum, and hypothalamus. The axons from the medially located VTA project primarily to more medial target tissues in the forebrain, whereas the more lateral SN axons project to lateral targets including the dorsolateral striatum. This structural diversity underlies the distinct functions of these pathways. Although a number of guidance cues have been implicated in the formation of the distinct axonal projections of the SN and VTA, the molecular basis of their diversity remains unclear. Here we investigate the molecular basis of structural diversity in mDN axonal projections. We find that Sonic Hedgehog (Shh) is expressed at a choice point in the course of the rostral dopaminergic projections. Furthermore, in midbrain explants, dopaminergic projections are attracted to a Shh source. Finally, in mice in which Shh signaling is inactivated during late neuronal development, the most medial dopaminergic projections are deficient
    • …
    corecore